Приложение к образовательной программе среднего общего образования МБОУ СОШ №19

РАБОЧАЯ ПРОГРАММА Курс по физике

«Методы решения задач по физике»

г Верхняя Тура 2020-2021 учебный год. Планируемые результаты освоения физики.

Личностными результатами обучения физике в средней школе являются:

- сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностноориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные результаты:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений; формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач; развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение; освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

• формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные результаты:

Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования— знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Содержание обучения в рамках курса включает в себя:

- Знакомство с минимальными сведениями о понятии «задача».
- Осознание значения задач в жизни, науке, технике, быту
- . Знакомство с основными приемами составления задач.
- Умение классифицировать задачу по 3-4 основаниям.
- Решение практических задач: уметь искать оригинальные решения, самостоятельно выполнять различную творческую работу.
- Владение навыками контроля и оценки своей деятельности.

Цель этого курса – развить у учащихся следующие умения: решать предметно-типовые, графические и качественные задачи по дисциплине; осуществлять логические приемы на материале заданий по предмету; решать нестандартные задачи. Программа посвящена рассмотрению отдельных тем, важных для успешного освоения методов решения задач повышенной сложности. В программе рассматриваются теоретические вопросы, в том числе понятия, схемы и графики, которые часто встречаются в формулировках контрольно- измерительных материалов, а также практическая часть. В практической части рассматриваются вопросы по решению экспериментальных задач, которые позволяют применять математические знания и навыки, которые способствуют творческому и осмысленному восприятию материала.

Задачи:

- 1. Научить учащихся самостоятельно анализировать конкретную проблемную задачу и находить наилучший способ её решения.
- 2. Развитие физического и логического мышления школьников.
- 3. Развить творческие способности учащихся и привитие практических умений.

Требования к уровню освоения содержания курса.

Учащиеся должны уметь:

- 1. Анализировать физическое явление;
- 2.Проговаривать вслух решение;
- 3. Анализировать полученный ответ;

- 4. Классифицировать предложенную задачу;
- 5. Составлять простейших задачи;
- 6.Последовательно выполнять и проговаривать этапы решения задачи средней трудности;
- 7. Выбирать рациональный способ решения задачи;
- 8. Решать комбинированные задачи;
- 9.Владеть различными методами решения задач: аналитическим, графическим, экспериментальным и т.д.;
- 10. Владеть методами самоконтроля и самооценки.

Содержание курса

Описание содержания разделов программы курса «Методы решения задач по физике». (10класс, 1 ч. в неделю, 34ч.)

1. Эксперимент (1 ч.)

Основы теории погрешностей. Погрешности прямых измерений.

Представление результатов измерений в форме таблиц и графиков.

2. Механика (10 ч.)

Кинематика поступательного и вращательного движения. Уравнения движения. Графики основных кинематических параметров.

Динамика. Законы Ньютона. Силы в механике: силы тяжести, упругости, трения, гравитационного притяжения.

Статика. Момент силы. Условия равновесия тел. Гидростатика.

Движение тел со связями – приложение законов Ньютона.

Законы сохранения импульса и энергии .

3. Молекулярная физика и термодинамика (12 ч.)

Основное уравнение МКТ газов.

Уравнение состояния идеального газа — следствие из основного уравнения МКТ. Изопроцессы..

Первый закон термодинамики и его применение для различных процессов изменения состояния системы. Термодинамика изменения агрегатных состояний веществ. Насыщенный пар.

Второй закон термодинамики, расчет КПД тепловых двигателей.

4. Электродинамика

(электростатика и постоянный ток) (11 ч.)

Электростатика. Напряженность и потенциал электростатического поля точечного заряда. Графики напряженности и потенциала. Принцип суперпозиции электрических полей. Энергия взаимодействия зарядов.

Конденсаторы. Энергия электрического поля

Постоянный ток. Закон Ома для однородного участка и полной цепи. Расчет разветвленных электрических цепей.

Магнитное поле. Принцип суперпозиции магнитных полей. Силы Ампера и Лоренца. Электромагнитная индукция.

№ п\п	Содержание	всего	Количество учебных занятий	
	обучения		теоретических	практических
1.	Механика	10 ч.	6	4
	Кинематика	8	2	2
	Динамика	5	2	2
	Законы	8	2	1
	сохранения			
2.	Молекулярная	12 ч.	4	8
	физика			
3.	Электродинамика	11 ч.	5	6
4.	Эксперимент	1 ч.	1 ч.	
	Всего часов	34	16	18

Календарно-тематическое планирование (10 класс, 34 ч., 1 ч. в неделю)

№ урока	Тема занятия	Вид	Дата
		занятия	
	I . Эксперимент (1 ч.)		
1/1	Основы теории погрешностей. Погрешности	Лекция	
	прямых измерений. Представление результатов		
	измерений в форме таблиц и графиков.		
	II. Механика (11 ч.)		
2/1	Кинематика поступательного и вращательного	Лекция	
	движения. Уравнения движения. Графики		
	основных кинематических параметров		
3/2	Решение задач по кинематике поступательного и	Решение	
	вращательного движения.	задач	
4/3	Решение задач по теме «Графики основных	Решение	
	кинематических параметров»	задач	
5/4	Динамика. Законы Ньютона. Силы в механике.	Лекция	
6/5	Решение задач по теме «Законы Ньютона»	Решение	
		задач	
7/6	Решение задач по теме «Силы в механике»	Решение	
1		задач	
8/7	Решение задач по теме «Статика»	Решение	
		задач	
9/8	Решение задач по теме «Гидростатика»	Решение	
		задач	
10/9	Законы сохранения	Лекция	
11/10	Решение задач по теме «Законы сохранения»	Решение	
		задач	
12/11	Контрольная работа №1 «Механика»	Решение	
		задач	

	III. Молекулярная физика и термодинамика (12	2 ч.)
13/1	Основное уравнение МКТ газов. Уравнение	Лекция
	состояния идеального газа. Изопроцессы	
14/2	Решение задач по теме «Основное уравнение	Решение
	MKT»	задач
15/3	Решение задач по теме «Уравнение состояния	Решение
	идеального газа»	задач
16/4	Решение задач по теме «Изопроцессы»	Решение
	•	задач
17/5	Решение графических задач по теме	Решение
	«Изопроцессы»	задач
18/6	Первый закон термодинамики и его применение	Лекция
	для различных процессов изменения состояния	
	системы. Термодинамика изменения агрегатных	
	состояний веществ. Насыщенный пар.	
19/7	Решение задач по теме «Первый закон	Решение
	термодинамики»	задач
20/8	Решение задач по теме «Агрегатные состояния	Решение
	вещества.»	задач
21/9	Решение задач на уравнение теплового баланса	Решение
		задач
22/10	Решение задач по теме «Насыщенный пар»	Решение
		задач
23/11	Второй закон термодинамики, расчет КПД	Лекция
	тепловых двигателей.	
24/12	Контрольная работа № 2. «Молекулярная	Решение
	физика»	задач
	V. Электродинамика (электростатика, постоянный т	ок) (10 ч.)
25/1	Напряженность и потенциал	Лекция
	электростатического поля точечного заряда.	
	Графики напряженности и потенциала. Принцип	
	суперпозиции электрических полей. Энергия	
	взаимодействия зарядов.	
	Конденсаторы. Энергия электрического поля	
26/2	Решение задач по теме «Напряженность и	Решение
	потенциал электростатического поля точечного	задач
	заряда. Графики напряженности и потенциала»	
27/3	Решение задач по теме «Принцип суперпозиции	Решение
	электрических полей. Энергия взаимодействия	задач
	зарядов»	
28/4	Решение задач по теме « Конденсаторы. Энергия	Решение
20/5	электрического поля»	задач
29/5	Решение задач по теме «Движение	Решение

	электрических зарядов в электрическом поле»	задач	
30/6	Постоянный ток. Закон Ома для однородного	Лекция	
	участка и полной цепи. Расчет разветвленных		
	электрических цепей.		
31/7	Решение задач по теме «Закон Ома для	Решение	
	однородного участка цепи»	задач	
32/8	Решение задач по теме «Закон Ома для полной	Решение	
	цепи»	задач	
33/9	Решение задач на расчет работы мощности	Решение	
	электрического тока.	задач	
34/10	Контрольная работа № 3	Решение	
	«Электродинамика (электростатика, постоянный	задач	
	ток)»		